Inferring Species Richness and Turnover by Statistical Multiresolution Texture Analysis of Satellite Imagery

نویسندگان

  • Matteo Convertino
  • Rami S. Mangoubi
  • Igor Linkov
  • Nathan C. Lowry
  • Mukund Desai
چکیده

BACKGROUND The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. METHODOLOGY/PRINCIPAL FINDINGS We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL). Species turnover, or [Formula: see text] diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species richness, or [Formula: see text] diversity, based on the Shannon entropy of pixel intensity.To test our approach, we specifically use the green band of Landsat images for a water conservation area in the Florida Everglades. We validate our predictions against data of species occurrences for a twenty-eight years long period for both wet and dry seasons. Our method correctly predicts 73% of species richness. For species turnover, the newly proposed KL divergence prediction performance is near 100% accurate. This represents a significant improvement over the more conventional Shannon entropy difference, which provides 85% accuracy. Furthermore, we find that changes in soil and water patterns, as measured by fluctuations of the Shannon entropy for the red and blue bands respectively, are positively correlated with changes in vegetation. The fluctuations are smaller in the wet season when compared to the dry season. CONCLUSIONS/SIGNIFICANCE Texture-based statistical multiresolution image analysis is a promising method for quantifying interseasonal differences and, consequently, the degree to which vegetation, soil, and water patterns vary. The proposed automated method for quantifying species richness and turnover can also provide analysis at higher spatial and temporal resolution than is currently obtainable from expensive monitoring campaigns, thus enabling more prompt, more cost effective inference and decision making support regarding anomalous variations in biodiversity. Additionally, a matrix-based visualization of the statistical multiresolution analysis is presented to facilitate both insight and quick recognition of anomalous data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling patterns of pollinator species richness and diversity using satellite image texture

Assessing species richness and diversity on the basis of standardised field sampling effort represents a cost- and time-consuming method. Satellite remote sensing (RS) can help overcome these limitations because it facilitates the collection of larger amounts of spatial data using cost-effective techniques. RS information is hence increasingly analysed to model biodiversity across space and tim...

متن کامل

Modelling avian biodiversity using raw, unclassified satellite imagery.

Applications of remote sensing for biodiversity conservation typically rely on image classifications that do not capture variability within coarse land cover classes. Here, we compare two measures derived from unclassified remotely sensed data, a measure of habitat heterogeneity and a measure of habitat composition, for explaining bird species richness and the spatial distribution of 10 species...

متن کامل

Survey: Crop Classification using Transform Domain Technique

Crops are highly cultivating all around the world and vary depending upon the quality of the land in each country. Crop classification is necessary to tell what crops they are and if they are good for that specific area. This classification will help agronomists to decide crop pattern and cultivation practice. Plants are a major source of food stuff, medicine and industry. However it is an impo...

متن کامل

Modeling broad-scale patterns of avian species richness across the Midwestern United States with measures of satellite image texture

a r t i c l e i n f o Avian biodiversity is threatened, and in order to prioritize limited conservation resources and conduct effective conservation planning a better understanding of avian species richness patterns is needed. The use of image texture measures, as a proxy for the spatial structure of land cover and vegetation, has proven useful in explaining patterns of avian abundance and spec...

متن کامل

Region Completion in a Texture using Multiresolution Transforms

Abstract Natural images, textures and photographs are likely to be impaired by stains.  As a result a substantial portion of the image remains blurred. However, a method called region completion is adopted to fill in the tainted part by using the information from the portion left unblemished by stains. A novel method to perform this operation is proposed in this paper. The three significant sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012